Transcriptional competence in pluripotency
نویسندگان
چکیده
منابع مشابه
Transcriptional competence in pluripotency.
Embryonic stem (ES) cells possess a globally open, decondensed chromatin structure that, together with trans-acting factors, supports transcriptional competence of developmentally regulated genes. However, our understanding of the mechanisms that establish transcriptional competence of specific genes is limited. In this issue of Genes & Development, Xu and colleagues (pp. 2824-2838) show that t...
متن کاملThe transcriptional foundation of pluripotency.
A fundamental goal in biology is to understand the molecular basis of cell identity. Pluripotent embryonic stem (ES) cell identity is governed by a set of transcription factors centred on the triumvirate of Oct4, Sox2 and Nanog. These proteins often bind to closely localised genomic sites. Recent studies have identified additional transcriptional modulators that bind to chromatin near sites occ...
متن کاملAn Extended Transcriptional Network for Pluripotency of Embryonic Stem Cells
Much attention has focused on a small set of transcription factors that maintain human or mouse embryonic stem (ES) cells in a pluripotent state. To gain a more complete understanding of the regulatory network that maintains this state, we identified target promoters of nine transcription factors, including somatic cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc) and others (Nanog, Dax1...
متن کاملThe Transcriptional and Epigenomic Foundations of Ground State Pluripotency
Mouse embryonic stem (ES) cells grown in serum exhibit greater heterogeneity in morphology and expression of pluripotency factors than ES cells cultured in defined medium with inhibitors of two kinases (Mek and GSK3), a condition known as "2i" postulated to establish a naive ground state. We show that the transcriptome and epigenome profiles of serum- and 2i-grown ES cells are distinct. 2i-trea...
متن کاملReconciling competence and transcriptional hierarchies with stochasticity in retinal lineages☆
Recent advances suggest that there is a stochastic contribution to the proliferation and fate choice of retinal progenitors. How does this stochasticity fit with the progression of temporal competence and the transcriptional hierarchies that also influence cell division and cell fate in the developing retina? Where may stochasticity arise in the system and how do we make progress in this field ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genes & Development
سال: 2009
ISSN: 0890-9369
DOI: 10.1101/gad.1881609